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Abstract

An empirical model to predict the effects of flight on the noise from a
supersonic transport is developed. This model is based on an analysis of
the exhaust jet noise from high subsonic flights of the F-15 ACTIVE
Aircraft. Acoustic comparisons previously attainable only in a wind
tunnel were accomplished through the control of both flight operations
and exhaust nozzle exit diameter. Independent parametric variations of
both flight and exhaust jet Mach numbers at given supersonic nozzle
pressure ratios enabled excellent correlations to be made for both jet
broadband shock noise and jet mixing noise at flight speeds up to Mach
0.8. Shock noise correlated with flight speed and emission angle through
a Doppler factor exponent of about 2.6. Mixing noise at all downstream
angles was found to correlate well with a jet relative velocity exponent of
about 7.3, with deviations from this behavior only at supersonic eddy
convection speeds and at very high flight Mach numbers. The acoustic
database from the flight test is also provided.

Introduction

The F-15 ACTIVE Aircraft Acoustics Flight Test was performed in the fall of 1997 at NASA Dryden
Flight Research Center. The test was developed to improve the understanding of the effects of high
subsonic flight speed on the generation and propagation of aircraft jet exhaust noise, with application to
the acoustic footprint of the flight of a High Speed Civil Transport during climb to cruise. It was a coop-
erative effort involving NASA Dryden Flight Research Center and NASA Langley Research Center,
together with major American aircraft engine and airframe manufacturers.

A flight test six years earlier provided the aeroacoustics community with some relevant flight data
(ref. 1). This previous test was also performed at Dryden and consisted of flights of F-18 and F-16 air-
craft. Some control over flight conditions useful to acoustic testing was obtained for the F-18 by main-
taining one of the two engines at flight idle. However, because the F-16 has only one engine, that same
level of control was unattainable for this aircraft, resulting in undesirable aircraft acceleration during
flyovers. Nevertheless, enough useful acoustic data were obtained during this test to show that the theory
of the effects of flight on simple acoustic sources was insufficient to predict the observed trends in the
data (ref. 2).

The ensuing years brought the development of actively controlled exhaust nozzles for an F-15 aircraft
to extend thrust vectoring capability to high speed flight (ref. 3). This nozzle was also seen as an ideal
tool for obtaining variations of the nozzle internal geometry that are required to parametrically study the
effects of flight on supersonic jet exhaust noise, resulting in the F-15 ACTIVE Aircraft Acoustic Flight
Test.

For the F-15 flight test, nozzle control was combined with flight procedures that incorporated small
angle climbs or dives designed to maintain constant flight speed during the time the aircraft was travers-
ing the acoustic measuring range, resulting in test data, which through a unique data reduction procedure,
have generated an excellent acoustic database for equivalent level high speed flyovers at parametrically
varied aircraft speed and nozzle conditions. The acoustic spectra of the database are presented in this
report, along with major findings regarding effects of high subsonic flight speed on supersonic jet mixing



noise and broadband shock noise. Preliminary studies of these data were undertaken in references 4
and 5.

Nomenclature

ALT nominal aircraft altitude above ground level, ft
A, nozzle exit area, ft2

Ag nozzle throat area, ft2

cf ambient speed of sound at flight altitude, ft/s
D Doppler factor, 1 — My cos ¢

DGPS Global Positioning System (with differential corrections)
Fg nozzle gross thrust, 1bf

INS Inertial Navigation System

M, nozzle exit Mach number

My aircraft flight Mach number

M; fully expanded jet Mach number

Miel jet relative Mach number, Vie/cs

m exponent; slope of straight line curve fit

NPR nozzle pressure ratio

OASPL overall sound pressure level to frequency of 1.5 kHz, dB

OASPLgn OASPL for shock noise correlation, normalized by B' M ;-'5, dB

PLA power lever angle, deg

PSD noise source power spectral density (1 Hz bandwidth), dB
Da ambient pressure at flight altitude, psia

De nozzle exit static pressure, psia

D3 exhaust nozzle total pressure, psia

R source to observer distance at noise emission time, ft



R, source to observer distance at noise reception time, ft

T, ambient temperature at flight altitude, deg R

Tg nozzle exhaust total temperature, deg R

Ve nozzle exit velocity when nozzle divergent section is shock free, ft/s
Ve aircraft flight velocity, ft/s

Vi fully expanded jet velocity, ft/s

Viel Jet relative velocity, V; — Vy, ft/s

wg exhaust gas mass flow rate, lbm/s

B shock strength parameter, ‘M 3 -M ]2‘

Y exhaust gas specific heat ratio

c standard deviation from straight line fit

v emission time observer angle measured from upstream direction, deg
v, reception time observer angle measured from upstream direction, deg
Flight Operations

A photograph of the F-15 ACTIVE Aircraft in flight is given in figure 1. The aircraft is powered by
two Pratt & Whitney F-100 engines. To reduce thrust and hence the tendency of the aircraft to accelerate
at the desired acoustic test conditions, it was decided that the right engine would be maintained at flight
idle during most of the testing. Prior to the flight test, good estimates of conditions that could be flown
were obtained by using the engine operating deck and the F-15 ACTIVE simulation facility. The small
climb/dive angle of the aircraft required to maintain the desired constant speed at a given engine condition
and given nominal altitude was thus obtained prior to the actual flight.

A typical flyover began with both engines at the desired condition and the aircraft accelerating/
decelerating as it approached the test range at an altitude somewhat lower/higher than the desired nominal
altitude. Just prior to reaching the acoustic array, the pilot would bring the right engine throttle to flight
idle and pitch to the climb/dive angle required to maintain a constant velocity at that engine condition.
The left engine throttle setting and aircraft speed were maintained constant throughout the acoustic range,
with the aircraft passing through the nominal altitude when directly over the center of this range. The
maximum climb angle was about 15°.



Test Conditions

For the typical military fighter aircraft, standard engine operation at subsonic flight speeds and low
altitude requires that the supersonic exhaust nozzle be operated in the overexpanded mode, resulting in
the nozzle exit static pressure being lower than the ambient pressure. This lower pressure results in
shocks within the jet plume and acoustic emission in the direction forward of the aircraft being dominated
by jet broadband shock noise (ref. 2). Since the strength of the shock structure is dependent on both
nozzle pressure ratio and ratio of nozzle exit to throat areas, the ability to change this area ratio allowed
some control of the overexpansion. However, because the extent of this control was seldom large enough
to obtain a fully expanded nozzle for the desired engine conditions, most runs were made with over-
expanded exhaust flow.

The nozzle area ratio was controlled by varying the nozzle exit diameter. For most flights, this ratio
was maintained at its smallest allowable setting to minimize the degree of overexpansion of the exhaust
jet of the powered engine. Larger exit areas were set to increase overexpansion during the sequence of
runs that were expressly aimed at evaluating jet broadband shock noise.

There were eight series of runs performed during the test, labeled as the 100 series through the 800 se-
ries. The 100 series of runs was aimed at measuring exhaust jet mixing noise at a typical takeoff Mach
number (0.32) over a range of low nozzle pressure ratios (1.2 to 2.4). In the 200 series, an aircraft Mach
number (0.32 to 0.90) versus NPR (2.2 to 4.8) schedule was chosen as typical of an aircraft climbout from
takeoff to cruise. The 300 series was aimed at evaluating low altitude noise propagation at a typical
takeoff condition. The 400, 500, and 600 series of runs were aimed at evaluating broadband jet shock
noise by holding NPR constant and using parametric variations of both nozzle exit area and aircraft Mach
number, attainable by changing the climb angle for the different flight speeds. The 700 series had both
engines operating at the same power setting and used the yaw vectoring ability of the exhaust nozzles to
determine the effect of nonparallel exhaust jets. Finally, the 800 series was run at very high NPR (4.3)
and flight Mach number (0.9) as the only part of the engine operating range that allowed for an under-
expanded exhaust jet at reasonably low altitude.

Ten flights were conducted on five days, consisting of early- and mid-morning flights on 9/19, 9/23,
9/24, 10/2, and 10/3/97. (The week layoff in between was caused by a rare Mojave Desert hurricane.)
In all, 52 different operating conditions were tested, with many being repeated, for a total of 92 runs.
Table 1 lists flight and engine parameters for all runs. Runs were numbered by objective, not chronologi-
cal order.

Weather and Tracking Data

Weather data for propagation modeling were obtained from two sources. The primary source was a
series of rawinsonde soundings that provided pressure, temperature, humidity, wind speed, and wind
direction as a function of altitude. Density was calculated from temperature, pressure, and humidity. The
soundings were made before and after most of the flights. Because rawindsonde soundings are made by
tracking the relatively slow ascent of a balloon carrying an instrument package, altitude measurements are
a function of time. The second source of weather data was a 10-m tower, located near the microphones,
that provided continuous measurements of temperature, wind speed, and wind direction at a variety of
locations along its height. Weather changes continuously, so the tower data were used to determine
whether to interpolate between rawinsonde releases (when tower data indicated gradual weather changes
between runs) or to use a single rawindsonde release (when tower data indicated an abrupt weather tran-
sition between runs).



Tracking data were derived from three independent sources: an Inertial Navigation System (INS), a
Global Positioning System with differential corrections (DGPS) for enhanced accuracy, and C-band radar,
each sampled at a rate of two samples per second. The INS was used only for pitch, roll, and yaw attitude
data. The DGPS provided the most accurate position data but did not work all the time. DGPS data were
used when they were available. Radar data were always available but were used only when DGPS was
unavailable. Small but systematic differences between DGPS and radar were observed when both were
working, so a correction based on those differences was applied to the radar to improve its accuracy.

Acoustic Data Acquisition and Reduction

The acoustic data were obtained from an array of 20 equally spaced 0.5-in. condenser microphones
placed on 6-ft wooden ground boards located directly under the flight path. The separation distance
between microphones was 300 ft. Narrowband spectra at various emission angles were obtained by
ensemble averaging 0.5-s spectra derived from each microphone by the following procedure.

As detailed in appendix A, a ray-tracing procedure was used to determine the propagation path of
sound from each aircraft tracking position to the position of each of the 20 microphones. The aircraft
attitude data and the resultant ray directions were used to obtain acoustic emission angles and corre-
sponding emission times associated with each combination of tracking position and microphone number.
Acoustic emission angle versus emission time data were then interpolated to determine the acoustic
emission time and aircraft position associated with specified emission angles (that ranged from 30° to
160° in steps of 5°) for each microphone. The same ray-tracing procedure was then used to determine
reception time and (frequency dependent) propagation losses for each combination of emission angle and
microphone number. A 0.5-s power spectrum was calculated for each of the microphones at each of the
reception times associated with the specified emission angles. Calculated propagation and ground board
effects were then removed to transform received spectra to emitted spectra at a reference distance of 1 ft.
For each emission angle, the emitted spectra for all microphones were averaged to generate an ensemble-
averaged narrowband source spectrum which was then normalized to 1-Hz bandwidth. All acoustic
results presented in this report are from these stationary far-field observer power spectral densities at a
given emission angle that has been propagated back to the aircratft.

Power spectral densities are shown in appendix B for most runs. Repeat runs are overlaid to show the
repeatability of the acoustic data. The spectra are given for emission angles as measured from the flight
direction of 30° to 160° in 10° intervals. Also shown is the overall sound pressure level directivity com-
puted from these spectra. Frequency is limited to 1.5 kHz because of the behavior that commonly arises
at high frequency when measured flight spectra are propagated back to the source. This behavior, result-
ing from large atmospheric absorption corrections, consists of rising spectrum levels above 1 kHz that can
be seen in the spectra at the extreme emission angles (i.e., the longest propagation paths). Two known
reasons that could cause these rising levels include dynamic range limitations of the instrumentation and
nonlinear propagation of the source noise. However, for the current experiments, the large dynamic range
of the digital recordings precludes the former, and that the rising spectral behavior is enhanced as the
flight speed increases, gives one doubt that the latter is the sole cause of this behavior. The actual cause
for the rising spectra is unknown.

Analysis of Acoustic Data
Typical of high speed turbojet engines, the dominant noise measured during the F-15 flyovers con-

sisted of exhaust jet broadband shock noise and jet mixing noise. Because both sources are broadband in
nature, the overall sound pressure level (OASPL) is chosen as the best parameter to correlate the noise



data. Given that the measured peak frequencies of both sources are below 1 kHz, the OASPL that is
computed by ignoring contributions above 1.5 kHz is a good representation of the true OASPL and is the
value used in the data comparisons that follow.

Because the 400, 500, and 600 series of runs were specifically designed for shock noise studies, much
of the acoustic analysis will concentrate on these series. Each of these series was divided into two sub-
series, denoted as the low and high series. For example, runs between 400 and 440 were in the low
400 series and those between 450 and 490 were in the high 400 series. Within each of the six subseries,
flight speed was varied while attempting to keep constant both nozzle exit Mach number (i.e., the nozzle
area ratio) and fully expanded jet Mach number (i.e., the nozzle pressure ratio). Because of constraints
on the flight envelope and engine operating conditions at the low altitudes required for best acoustic
measurements, only a small range of values was possible for the fully expanded Mach number during the
shock noise studies.

The nominal conditions and the average of actual conditions for the six subseries of runs are given in
table 2. Because supersonic jet broadband shock noise has been correlated in the past (ref. 6) with M;,

M,, and the shock strength parameter ' = | ‘M ez -M ]2‘, these parameters were controlled as follows. All

400 series runs had a nominal M; = 1.36 and all 500 series runs had a nominal M; = 1.46. Both low series
had the same nominal ' = 0.67, and both high series had the same nominal M, = 1.71. The 600 series
had the same nominal exhaust conditions as the 500 series but had a higher nominal flight altitude.

A qualitative assessment of the effects of flight on noise spectra generated by an overexpanded jet can
be seen in comparisons of figure 2 for data from the high 500 series. For this series, the nominal nozzle
exit and jet fully expanded Mach numbers were 1.74 and 1.46, respectively. Spectra are shown for eight
angles along with the OASPL directivity at flight Mach numbers of 0.46, 0.61, and 0.77. Because both
the nozzle operating condition and the nozzle geometry were the same for the three runs, the figure shows
the effect of flight Mach number on the noise from a given nozzle exhaust.

In the direction upstream of the aircraft (y < 90°), the spectra are dominated by broadband shock noise
with a primary broadband peak at 500 to 700 Hz. As the flight Mach number increases, so do the spectral
amplitudes, corresponding to a convective amplification of the shock noise. Near 90° only minor changes
occur with flight speed. Here the broadband shock noise is still dominant, having a wider bandwidth and
a spectral peak closer to 800 Hz. At 105° jet broadband shock noise (peaking at 1000 Hz) and jet mixing
noise (comprising the lower frequency portion of the spectra) are seen to be comparable. Finally, in the
downstream direction (y > 120°) the spectrum is dominated by mixing noise rather than shock noise.
Mixing noise amplitudes decrease with flight speed, primarily due to the reduction of relative velocity
between the exhaust jet and the ambient air. The last frame of figure 2 again shows that the effects of
flight on the OASPL directivity are opposite in the upstream and downstream directions.

The consistency of this behavior for each of the four subseries of 400 and 500 runs is seen in the
OASPL directivities at four flight speeds in figure 3. As in figure 2, upstream propagating shock noise is
clearly amplified as flight speed increases, whereas downstream propagating mixing noise has a maxi-
mum near 140° and decreases in amplitude as flight speed increases. The angle at which the spectra
switch from shock noise dominance to mixing noise dominance is approximately 105°. Hence, in the
analysis of the jet noise to follow, broadband shock noise is assumed to produce the OASPL below 90°
emission angle and mixing noise is assumed to produce the OASPL above 120° emission angle.



Jet Broadband Shock Noise

As is evident in figure 3, the dominant effect of flight on radiated broadband shock noise is the
increase in noise level in the forward direction with flight speed. It is generally agreed that this increase
in the propagated noise, called convective or dynamic amplification, can be modeled as a function of the
Doppler factor in the form (1 — My cos W)=, where m is an integer. Various theories and empirical
formulations have chosen different values for the exponent m. Mani (ref. 7) and Tanna, Dean, and Burrin
(ref. 8) chose m = 4, which is the exponent for the theoretical acoustic monopole in motion, and Stone
(ref. 9) used m = 1 for his data correlations. In the more recent theory of Tam (ref. 6) this exponent is
hidden by the use of source coordinates rather than the more customary observer coordinates. However,
as shown in appendix C, when Tam’s formulation is transformed to observer coordinates, his predicted
amplification is equivalent to the Doppler factor with an exponent m = 2.

The broadband shock noise OASPL is correlated with the Doppler factor in figure 4 for the low
400 series, in figure 5 for the high 400 series, in figure 6 for the low 500/600 series, and in figure 7 for the
high 500/600 series. (Note that although the 500 and 600 series had markedly different flight altitudes,
the acoustic results have been propagated back to the aircraft so that the two series can be analyzed
together.) These figures consist of plots for each of the four flight Mach numbers. In that flight Mach
number is constant, the variation in the Doppler factor in each plot is due to changes in the noise emission
angle. Also shown are the computed least squares straight lines. These lines fit the data well, although
there are indications of less gradual increases in OASPL at the upstream angles than at angles close to
90°. The slope of the line m, which corresponds to the Doppler factor exponent, and the standard devia-
tion of the data from the straight line fits G, are given on each plot. The exponent m lies between 2 and 3
for all but one of the 16 plots, and the average standard deviation is 0.5 dB, which indicates an excellent
correlation of the shock noise with Doppler factor. The average slope is m = 2.5, which is close to the
Tam prediction m = 2.

The correlations in figures 4 through 7 show the variations in OASPL with the Doppler factor as the
noise emission angle is changed. To see the corresponding variations as the flight Mach number is
changed, the OASPL needs to be corrected because both nozzle and engine conditions could only be held
nominally constant as the flight Mach number was varied. This correction is accomplished by independ-
ent evaluations of the variations in OASPL due to changes in ' and M; as follows.

In the predictions of Tam, B' to the fourth power is the factor that has the strongest influence on the
amplitude of broadband shock noise. The influence of B' on the flight data can be determined directly
from comparisons of OASPL between the low subseries and the high subseries of any of the three series
of runs. For these comparisons, exhaust nozzle pressure ratio and nozzle throat area are held constant
while the exit area is changed, resulting in a change in B' due to a change in nozzle exit Mach number at a
constant fully expanded jet Mach number. An example of these comparisons is given in figure 8, which
shows OASPL directivities for the low and high 400 series of runs for each of the four flight Mach num-
bers. As expected, the jet mixing noise that dominates the downstream direction is unchanged because
both the flight and fully expanded jet velocities are the same for each pair of runs being compared. In the
upstream direction, greater shock noise results from the higher nozzle exit Mach numbers of the high sub-
series, which yield larger values of B' and a stronger shock structure in the jet plume.

A calculation based on the magnitude of the increase in OASPL with ' shows that the noise level
difference is a function of the first power of ' rather than the fourth power, as proposed by Tam’s theory
(ref. 6), which can be seen in figure 9 where the noise directivities given in figure 8 are repeated with the
OASPL normalized by the first power of B'. The resulting agreement of the upstream noise data is seen



to be excellent. The shock noise dependence on the first power of B' is further confirmed by a similar
comparison between the low and high 500 series in figure 10.

In addition to a dependence on ', Tam’s prediction for the amplitude of shock noise contains other
factors involving the fully expanded velocity and/or fully expanded Mach number. To judge the influ-
ence of these other factors on the shock noise, the OASPLs of the low 400 series and low 500 series are
compared at each of the four flight Mach numbers in figure 11. For each pair of runs compared, although
the fully expanded Mach number is different, B' is kept relatively constant by increasing the nozzle exit
diameter (and hence increasing M,) as M; is increased. Here both the downstream jet mixing noise and
the upstream jet shock noise increase because of the increasing fully expanded jet velocity.

In an attempt to quantify the increase in shock noise due to the higher jet velocity, the OASPL at 90°
and its value normalized by 10 log ' are correlated with both the fully expanded Mach number and fully
expanded velocity in figure 12 for all runs in the 400 through 600 series.

Three things can be noted from the plots in figure 12. First, by comparing the left and right plots, the
normalization of OASPL by the first power of B' does result in considerably less scatter around the
straight line fit. Second, comparing the standard deviations of the two plots on the right indicates that
fully expanded Mach number does better than velocity in correlating the data. Third, the power of the
fully expanded Mach number that best correlates the broadband shock noise for these runs is the slope of
the top right plot, which is 5.5 (rounded to the nearest 1/2 power).

Normalizing the data of figure 11 by M; to the 5.5 power gives the directivities shown in figure 13.
This figure shows that good agreement between normalized upstream noise levels is attained at all four
flight Mach numbers.

Having shown the broadband shock noise amplitude can be correlated well by the product ' M 5'5, the

influence of increasing flight Mach number on the dynamic amplification of this noise can now be deter-
mined. The normalized broadband shock noise OASPLgy, defined as

OASPLsN = OASPL — 10 log B' — 55 log M; (1)

is shown at 9 angles from 30° through 70° versus the Doppler factor in figure 14. The results from all
44 runs in the 400/500/600 series are shown, with the variation in each plot indicating the effect of
increasing flight Mach number at a given emission angle. The slope of the straight line fit, corresponding
to the Doppler factor exponent, varies between 2.7 and 3.4, with the exponent increasing slightly as 90° is
approached. The average of the standard deviation of the data is about 0.6 dB, again indicating excellent
fit to the data. The average value of the Doppler factor exponent obtained from the flight Mach number
variations is about 3.0, slightly higher than the value 2.5 that was obtained from the angle variations.

The effects of flight on jet broadband shock noise due to both flight Mach number and angle variations
are combined in figure 15. The normalized OASPL versus Doppler factor is given for 528 data points
consisting of all 44 runs at 5° increments from 35° to 90°. The straight line fit of the data from the over-
expanded F-15 exhaust jets yields a broadband shock noise Doppler factor exponent of 2.6, with a stan-
dard deviation of 0.7 dB and an intercept of 155 dB.

The Doppler exponent obtained from the flight data indicates that the amplification given by m = 4, as
obtained from the computation of a monopole in motion, overestimates broadband shock noise in flight



and also shows that the value of m = 2, which is applicable to Tam’s prediction, is closer to the data than
are other predictions.

In summary, by combining the results of figure 15, along with the previously found dependency of
OASPL on ' and M;, suggests that the source amplitude of the F-15 exhaust jet broadband shock noise in
flight can be written as

L 1y5.5 Y
< P2 >shock noise — 1013 p M5 (1 =My cos ) 26 (2)

Comparison of Flight Spectra With Tam’s Predictions

Tam’s theory also provides a prediction of the broadband shock noise spectra. Comparisons of these
predicted spectra with measured flight data are given in figures 16 and 17 for the low 400 series, at lowest
and highest flight Mach numbers, respectively. As evident from the figures, the predictions yield a series
of modes whose peak amplitudes decrease with increasing frequency. As the observer angle increases,
the peak amplitude decreases and its frequency increases, in agreement with the measurements. These
spectral comparisons are similar to those reported from the previous flight test of an F-18 aircraft (ref. 1).
Comparisons for other runs in the 400 and 500 series show similar agreement.

Additional comparisons of measured and predicted spectra are given in figures 18 and 19 for data from
the 800 series. This series contains the only pair of flights in which the nozzle exit area was able to be
sufficiently varied at a given nozzle pressure ratio to obtain not only the usual highly overexpanded
exhaust jet, but also a slightly underexpanded jet. Figure 18 presents spectra for the former case, where
B'=0.86, and figure 19 gives spectra for the latter case, where '=0.27.

Although figure 18 shows the good agreement between the predicted and measured spectral amplitude,
the near fully expanded spectra of figure 19 show a significant underprediction. The values of the
broadband shock noise primary mode spectral peak of the measured data show an average difference of
about 4 dB between the two figures, versus about an 11 dB difference between the predicted values. This
result indicates that when flying close to the fully expanded condition, real convergent-divergent nozzles
can contain more shock noise than Tam predicts.

The broadband shock noise level dependence on the first power of B' that was found previously
accounts for this measured noise level difference. It predicts the shock noise difference to be 10 log
(0.86/0.27), or about 5 dB, which is very close to the measured peak spectral differences between
figures 18 and 19.

A strong indication that the results of figure 19 for a slightly underexpanded jet hold equally well for a
slightly overexpanded jet can be obtained from run 632. Unlike all the other runs during the flight test,
the pilot used a throttle setting for run 632 that was somewhat higher than planned, which resulted in a
higher than desired fully expanded velocity and a slight acceleration from the planned flight Mach num-
ber of 0.77 upstream of the microphones to an overhead value of 0.81. Because of the accelerated flight,
the spectra from this run are not given in the acoustic database in appendix B, nor were they used in the
analysis of the data in this report. However, because this pilot error yielded the only run with a slightly
overexpanded exhaust jet, the measured acoustic results are given in figure 20 along with Tam’s predic-
tion for an assumed constant velocity equal to the overhead flight velocity. Note that the nozzle condi-
tions of figures 19 and 20 yield the same degree of nonperfect expansion (B' = 0.27). An overlay of the
two figures shows equivalent differences between the measured and predicted primary broadband shock
noise peak levels. Figure 20 data lead to the conclusion that the Tam prediction underestimates the



broadband shock noise level for slightly overexpanded jets by the same amount that it does for slightly
underexpanded jets.

Jet Mixing Noise

By explicitly expressing only the effects of flight velocity and the most dominant effects of fully
expanded jet velocity on exhaust jet mixing noise, the mean square acoustic pressure at a given far-field
distance from the nozzle is commonly expressed as (ref. 10):

n m(y)
cv/ (Vj —vf]

1-My cosy V;

<p*> 3)

mixing noise =

where the factor C contains additional parameters that are only weakly dependent on V;. At static condi-
tions equation (3) reduces to C Vj" , where n = 8 gives the well known 78 law for subsonic jets.

Attempts to assess the exponents n and m from the F-15 flight data led to the conclusion that the best
correlation of the effects of flight can be obtained by setting n = m, which is equivalent to assuming that
the correct noise variation can be obtained by replacing the jet velocity in the static case by the relative
velocity, V;—Vp, in the flight case. That this relationship correlates the jet mixing noise well can be seen
from the measured noise data from the 100 series, during which the aircraft was maintained at the nomi-
nal flight Mach number 0.34, while the jet Mach fully expanded number was varied from 0.8 to 1.2. Data
from the 100 series and the very low altitude 300 series (flown at the same flight Mach number of 0.34)
are given in figure 21. Shown is the OASPL (normalized for the Doppler factor via eq. (3)) versus the jet
relative Mach number (jet relative velocity nondimensionalized by the ambient sound speed) for y = 120°
to 160°. The relative Mach number ranged between 0.7 and 1.4 for these data. The slope of the straight
line fit through the data represents the relative velocity exponent m. Excellent correlations (average
6 < 0.4) are obtained, with a relative velocity exponent m varying between 6.7 and 7.7 over the entire
range of downstream observer angles.

Figure 22 extends this correlation to the remaining low altitude data (the 400 and 500 series). Beyond
the smallest angles the correlation is not good, with standard deviations from the curve fit greater than
1 dB. The reason for the absence of the excellent straight line fit of figure 21 is due to the change in the
peak directivity angle of the mixing noise that was previously seen in figure 3. At a flight Mach number
of 0.34, the peak directivity angle of the 400 and 500 series data is 135°, while the 100 series of runs have
peak directivities closer to 145°. This change in the peak directivity angle likely results from the exhaust
jet relative Mach number of the former being above 1.6, while the 100 series have relative Mach numbers
less than 1.4. It is within this relative Mach number range that the convection velocity of the noise
sources becomes supersonic, transforming the dominant jet mixing noise source from subsonic type
mixing noise to Mach wave radiation. The result is a shift in peak directivity to smaller angles in the
same manner as for a model static jet when supersonic convection velocities are reached by increasing jet
temperature.

However, because the exhaust jet relative velocity decreases as the flight speed is increased, runs in
the 400/500 series at higher flight Mach numbers have lower jet relative Mach numbers. Using the data
for all low altitude flyovers at flight Mach numbers below 0.7 and jet relative Mach numbers up to 1.5
gives the correlations of figure 23. Good correlation of the jet mixing noise data is again obtained. A
relative velocity exponent m = 7.3 and an average ¢ of about 0.7 dB are obtained. Hence, the good
correlation of the jet mixing noise with relative jet velocity is maintained for flight Mach numbers up to
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0.7 as long as the relative Mach number is below 1.5. (However, in addition to the OASPL for jet relative
Mach numbers above 1.5 being below the curve fit, as seen in fig. 22, the OASPLs from the highest flight
Mach number (0.77) fall above the curve fit and hence are not included in fig. 23.)

Figure 23 shows that the effects of flight on the exhaust jet mixing noise of the F-15 for all angles
from 120° through 160°, flight Mach numbers between 0.3 and 0.7, and jet relative Mach numbers
between 0.7 and 1.5, are well correlated by

7.3
< P > mixing noise = ( It J “4)

1-My cosy Cj

Concluding Remarks

The F-15 ACTIVE Aircraft Acoustics Flight Test has produced an excellent database for investigating
the effects of high speed flight on the exhaust noise from overexpanded axisymmetric jets. A wide range
of constant flight speeds was realized at a given engine and nozzle setting through the use of different
aircraft climb angles. Through ensemble averaging of an array of ground-based microphones, unique data
processing was used to obtain the noise from equivalent level flyovers at constant aircraft velocity.
Aircraft attitude and weather measurements were incorporated to produce noise source spectra that show
excellent agreement between flyovers at different altitudes. The measured spectra were dominated by jet
broadband shock noise in the upstream direction and by jet mixing noise in the downstream direction.
These results allowed for an evaluation of the effects of flight on both these components of nozzle
exhaust jet noise.

The influence of the important parameters governing supersonic jet broadband shock noise production
was able to be separated by the ability to control the exhaust nozzle exit area of the F-15 ACTIVE Air-
craft, which allowed for independent evaluation of the influence of the fully expanded Mach number and
the shock strength parameter ', enabling the effects of flight Mach number to be consistently evaluated.
Results indicate that variations in the noise level at all upstream angles (35° to 90°) and flight Mach
numbers (0.33 to 0.77) can be accounted for by a 2.6 power of the Doppler factor, which is closer to that
predicted by Tam (shown in appendix C to be equal to 2) than to those of other theories. However, the
F-15 data indicate that the shock noise amplitude has a smaller variation with the shock strength parame-
ter B' than predicted by Tam’s theory.

The effects of flight speed on supersonic jet mixing noise from the F-15 were found to be best corre-
lated by simply replacing the jet absolute velocity by the jet relative velocity. A jet relative velocity
exponent close to 7.3 was found for all observer angles beyond 120° and for flight Mach numbers to 0.7.
This correlation proved to be excellent up to a jet relative Mach number of 1.5, beyond which the noise is
likely dominated by Mach wave radiation.
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Table 2. Nominal (Nom) and Actual (Act) Conditions for the 400 Through 600 Series of Runs

[Actual conditions represent averages over number of runs for each run type]

Run No. of My M, M; B’ My
series runs Nom Act Nom Act Nom Act Nom Act Act
400 3 0.34 0.35 1.51 1.57 1.36 1.38 0.67 0.76 1.64
410 2 0.47 0.49 1.51 1.53 1.36 1.37 0.67 0.69 1.44
420 3 0.61 0.61 1.51 1.49 1.36 1.36 0.67 0.61 1.25
430 3 0.76 0.77 1.51 1.49 1.36 1.32 0.67 0.63 1.05
450 2 0.34 0.34 1.71 1.71 1.36 1.37 1.04 1.01 1.65
460 2 0.47 0.48 1.71 1.71 1.36 1.36 1.04 1.04 1.43
470 2 0.61 0.62 1.71 1.71 1.36 1.37 1.04 1.02 1.26
480 2 0.76 0.76 1.71 1.71 1.36 1.34 1.04 1.07 1.06
500 2 0.34 0.33 1.61 1.61 1.46 1.40 0.67 0.79 1.73
510 3 0.47 0.46 1.61 1.61 1.46 1.47 0.67 0.66 1.68
520 1 0.61 0.62 1.61 1.61 1.46 1.48 0.67 0.63 1.47
530 1 0.76 0.77 1.61 1.61 1.46 1.48 0.67 0.63 1.29
550 2 0.34 0.34 1.71 1.71 1.46 1.41 0.89 0.96 1.73
560 2 0.47 0.46 1.71 1.73 1.46 1.46 0.89 0.93 1.67
570 1 0.61 0.61 1.71 1.73 1.46 1.46 0.89 0.93 1.44
580 1 0.76 0.77 1.71 1.75 1.46 1.47 0.89 0.94 1.28
600 1 0.34 0.33 1.61 1.61 1.46 1.42 0.67 0.75 1.76
610 2 0.47 0.47 1.61 1.61 1.46 1.46 0.67 0.66 1.64
620 2 0.61 0.62 1.61 1.61 1.46 1.47 0.67 0.66 1.43
630 2 0.76 0.78 1.61 1.61 1.46 1.45 0.67 0.69 1.20
650 1 0.34 0.33 1.71 1.71 1.46 1.42 0.89 0.95 1.75
660 1 0.47 0.47 1.71 1.73 1.46 1.47 0.89 0.92 1.64
670 2 0.61 0.62 1.71 1.74 1.46 1.48 0.89 0.92 1.45
680 1 0.76 0.78 1.71 1.75 1.46 1.48 0.89 0.96 1.22
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Figure 1. F-15 ACTIVE Aircraft in flight.
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Figure 2. Power spectral densities of jet source noise at varying flight speed showing opposite effects in
upstream and downstream directions.
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Figure 4. Determination of broadband shock noise Doppler factor exponent m for y = 40° to 90° at four flight Mach
numbers with nominal jet conditions ;= 1.36 and M, = 1.51.
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Figure 5. Determination of broadband shock noise Doppler factor exponent m for y = 40° to 90° at four flight Mach
numbers with nominal jet conditions ;= 1.36 and M, = 1.71.
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Figure 6. Determination of broadband shock noise Doppler factor exponent m for y = 40° to 90° at four flight Mach
numbers with nominal jet conditions M; = 1.46 and M, = 1.61.
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Figure 7. Determination of broadband shock noise Doppler factor exponent m for y = 40° to 90° at four flight Mach
numbers with nominal jet conditions M; = 1.46 and M, = 1.71.
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Figure 14. Correlation of normalized broadband shock noise with Doppler factor variations due to changes in flight
Mach number at emission angles from 30° to 70° (400/500/600 series data).
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Figure 15. Correlation of normalized OASPL of broadband shock noise with Doppler factor at all angles
between 35° and 90° for the 400/500/600 series, yielding Doppler factor exponent m = 2.6.
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lower jet relative velocities.
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Figure 22. Attempted correlation of jet mixing noise (normalized by Doppler factor) at lowest nominal flight Mach
number for all jet relative velocities.
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Figure 23. Correlation of jet mixing noise (normalized by Doppler factor) at flight Mach numbers below 0.7 and jet
relative Mach numbers below 1.5.
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Appendix A
Ray Tracing

The choice of propagation model was driven by the characteristics of the atmosphere and aircraft as
well as the desire to make temporal comparisons between measured and predicted ground noise levels.
Ray acoustics explicitly account for convection of sound by winds, nonisotropic source directivity, and
propagation time by tracing a curved line associated with a particular starting point on a wave front. The
method of using a wave-slowness vector, as delineated by Pierce (ref. 11), to describe the effect of wind
on a ray path also proved useful in calculating a fluid frequency for absorption calculations. The slow-
ness vector s is defined as the gradient of the wave front at the location of a ray and can be written as

§= (A1)

c+

%l S

‘n
where 7 is the wave front unit normal, c is the sound speed, and w is the wind velocity vector.
Atmosphere

The atmosphere was assumed to be horizontally stratified with no vertical component of wind and
with both wind velocity and sound speed as functions of altitude only. This assumption greatly simplified
integration of the ray tracing equations. All measured atmospheric parameters as well as the calculated
density were assumed to vary linearly between the altitudes at which they were measured. The square of
the sound speed was determined from both temperature and humidity. Because temperature is the domi-
nant factor in the speed of sound calculation, the square of the sound speed was assumed to vary linearly
between the altitudes at which the temperature was measured.

Absorption

Derivation of the linear acoustic wave equation neglects viscous dissipative forces, which leads to a
conservative equation that ignores frequency dependent losses inherent in a real atmosphere. The loss
model adopted for this propagation model is based on the ANSI standard (ref. 12) but is different in some
respects. The new equations proposed by Bass, Sutherland, and Zuckerwar (ref. 13) for the relaxation
frequencies of oxygen and nitrogen were used in place of those appearing in the standard. The equation
of Goff and Gratch was used to determine the the saturation vapor pressure ratio.

The work of Roy (ref. 14) was used to define a frequency invariant

fi= e (A2)

1-v-s
that remains constant along a ray where f, is a frequency emitted by the aircraft, f; is the invariant

frequency associated with that emitted frequency, v is the velocity of the aircraft, and s is the wave
slowness vector. The frequency observed by a moving particle of air is given by

Ja=fiA=w-s) (A3)
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where w is the wind velocity vector associated with that air particle. It is this observed frequency f, that
is used to calculate absorption. The frequency observed by a microphone at a fixed point on the ground is
just the invariant f;. Absorption calculations require integration along the ray tube to determine the
cumulative effect, but the propagation distance used for absorption was different from the ray length. The
propagation distance for absorption was determined from the ray path by subtracting convection by
winds.

Integration and Convergence

The assumption of a stratified atmosphere greatly simplified integration of the ray tracing equations by
reducing them to three independent first order differential equations, two for mutually perpendicular
horizontal directions and one for time. The equations within each layer were nonlinear in the independent
variable (altitude) so a Gauss-Legendre numerical method was used to integrate each layer in sequence
from the beginning of a ray. For each combination of source and receiver, three closely spaced rays were
launched from the source at an initial estimate of the desired emission angles. Only the equations for the
two horizontal directions were integrated. The varying amounts by which the rays missed the intended
target were used to correct the initial launch angles via a two-dimensional secant method. The procedure
was repeated until a ray landed within less than 0.5 ft of the receiver, more than 100 iterations occurred
without convergence, or a ray vertexed (turned back upward) before reaching the ground. If a ray con-
verged on the receiver, three final rays were launched. One of the rays was integrated to determine
absorption and propagation time and the other two were used to calculate ray tube area and wave front
curvature at the receiver.

Blokhintsev Invariant

According to Pierce (ref. 11), conservation of wave action requires that the Blokhintsev invariant

p2|vT/+cﬁ|A (Ad)
(1=w-5)pc?

remain constant along an infinitesimal ray tube where p is the acoustic pressure amplitude, w is the wind
velocity vector, ¢ is the sound speed, 7 is the wave front unit normal, A is the ray tube area, s is the
wave slowness vector, and p is the air density. In the absence of absorption from viscous effects, the
acoustic pressure at the end of an infinitesimal ray tube p; can be written in terms of the acoustic
pressure at the beginning p and the atmospheric conditions at either end of the tube as

pfng[ﬂ][mclH|W0+Coﬁo|(1—ﬁl'§1)"1:| A5)

Al PoCo |VT/’1 +C]HA]|(1—1470'§0)C0

The first term in brackets on the right represents spreading loss (if the ray tube area increases). The
second term represents the familiar characteristic impedance correction. The third term is the Blokhintsev
correction that is necessary to account for variations in the dynamic interaction of propagating waves with
a moving medium. All three of these terms are included in received sound pressure level calculations.
All three require only a knowledge of conditions at either end of a ray tube and involve no integration
along the tube beyond what is needed to define the ray tube itself.
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Ground Effects

The ground is modeled as a flat surface with complex impedance. The method of Chien and Soroka
(ref. 15) was used for determining the sound level above an impedance plane for an incident spherical
wave. The correction for partial signal coherence suggested by Pao, Wenzel, and Oncley (ref. 16) was
included and the empirical relations of Delany and Bazley (ref. 17) were used to calculate the ground
impedance from an estimate of the ground flow resistance. A ground flow resistance of 1000 slug/ft3/s
(515000 kg/m3/s) was assumed to be representative of the hard packed lake bed surface on which the
microphones were placed. The model of Chien and Soroka assumes straight line propagation from source
to receiver on both direct and reflected paths, and their equations are written in terms of path length and
incident angle. Ray tracing yields curved propagation paths and wave front curvature that is not a func-
tion only of propagation distance, so the equations were recast in terms of wave front curvature and
incident angle at the location of the receiver. In that the microphones were in direct contact with the
ground boards, this ground effects correction equaled 6 + 0.05 dB for all frequencies of interest.
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Appendix B

Source Noise Power Spectral Densities

The power spectral density plots (figs. B1-B42) presented herein have been computed from ensemble
averages over the 20 measuring microphones projected back to the aircraft by correcting for ground
board, spherical spreading, and atmospheric absorption.
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Appendix C

Derivation of Tam’s Doppler Factor Exponent

In the shock noise predictions of Tam (ref. 6), the Doppler factor exponent is unclear due to the use of
reception coordinates rather than emission coordinates. Tam’s dynamic amplification factor is given as

RY(1-MFsin? v, ) (1)
To transform this expression to emission coordinates, we use the relations

R, siny, = Rsiny and tany, :L\VM (C2)
cosy—M;

Introducing the factor

g:\/1—2Mf cosy+ M7 (C3)

reduces equations (C2) to
R.=cR and siny, = g_l siny (c4)
and the dynamic amplification factor (C1) to
Rz(l—Mf cosl|l)2 (C5)

Hence, Tam’s prediction for the dynamic amplification factor reduces to the standard Doppler factor with
an exponent m = 2.
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